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Abstract

The contribution of variance from a pressure injection to the final analyte peak in capillary electrophoresis (CE) is studied
quantitatively. The band broadening process of CE can be described by the product of the Laplace transformed contributing
factors; the inverse transform of the product gives the final peak shape which is the convolution of the original functions.
The CE process is, therefore, similar to the chromatographic processes described by Sternberg. Based on the additivity of the
variance, the injection induced variance is transferred directly to the final peak. The differences between the concepts of band
broadening and peak broadening are discussed. Because the injection length from a pressure induced injection is the same for
all analytes, and the migration rates during the CE separation are different for these analytes, the variance contributed by
injection is larger for slower migrating analytes. The pressure forced flow generates a parabolic component in an injected
sample plug, and this should also be considered in calculating the total injection length (7). The variance is (1/ 16)7° for a
sample plug with a Gaussian concentration profile, and (1/ 12)7* for one with a rectangular profile. It is demonstrated that
the total variance of an analyte peak increases at the same rate as the injection variance. The difference between the total
variance and the injection variance is contributed by longitudinal diffusion and other factors.
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1. Introduction

Both the column used in chromatography and the
capillary used in CE act as Gaussian operators during
a separation, but the capacity of the Gaussian
operator for the capillary in CE is much smaller.
Thus, the injection length in CE may contribute to
sample band width much more significantly. The
theory describing the relationship between the in-
jection variance and the total variance of the analyte
peak in gas chromatography has been discussed by
Sternberg [1].

*Corresponding author.

Sternberg’s theory describes how an ideal chro-
matographic column, that acts as a perfect Gaussian
operator, blends the effect of a sample plug into the
final analyte peak. The variance resulting from
different shaped plugs is obtained by using the
second derivative of a function that describes the
plug shape [2]. If a cylindrical plug (rectangular in
concentration profile) with a length, 7, is injected
onto the column, the resulting contribution to the
final peak variance is equal to 7°/12. If a plug with a
Gaussian concentration distribution around its center
of gravity (Gaussian profile) is injected, the variance
contributed to the final peak is 7°/16.

The effect of electrokinetic injection in CE has
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been studied previously [3-7]. Some authors have
assumed that the injection plug is perfectly cylindri-
cal, and used the constant 1/12 to test other results
when electrokinetic injection is used [3-6]; others
have shown that when plotting the total peak vari-
ance against the injection variance, the slope is
usually somewhere between 12 and 16 when optical
gated injection was employed [7].

Pressure injection, or sometimes hydrodynamic
injection, is the most common injection method in
commercial automated CE systems. However, the
effect of injection length on the final analyte peak
shape has not been systematically studied. This paper
demonstrates that pressure injection and electrokin-
etic injection not only differ in mechanism, but also
in the amount of variance contributed to the final
analyte peak.

2. Theory

2.1. The variance of an analyte peak

The efficiency of a separation column, or the
number of theoretical plates, N, is obtained by:

L2

N= (1)

2
O-TOI,B

where L is the effective length of the capillary, o, 5
is the total standard deviation of a band on the
column, which is 1/4 of the baseline band width if
the concentration profile of the band is Gaussian, and
o'?ro‘_B is the variance of the band. It should be noted
that the units of standard deviation in Eq. (1) have to
be units of length. When the analyte band passes
through the detection window, the band width is
translated to peak width, and the band variance is
transformed to peak variance. The total variance of a
peak is defined as:

n
2 2
O-Tot ZkE] o-k (2)

where o is the total variance of the peak, and k
represents the different factors that contribute to peak
broadening. Eq. (2) is called the additivity of vari-
ance. If injection volume and longitudinal diffusion

are the major factors that contribute to peak broaden-
ing, the total variance will be:

2 2 2 2
Ot = O01aj T Oip T+ Toper (3)

where a'lznj, ot and T3 mer are the variances caused
by injection, longitudinal diffusion and other factors,
respectively. The variance caused by other factors
has been discussed by Hjertén [8] and Cheng et al.
[9]. The o, in Eq. (3) is often measured from the
analyte peak, thus, has units of time. All terms on the
right hand side of Eq. (3) have to be converted to
time as well before the additivity of variance can be
used. Therefore, the variance contributed by an
identical sample plug length for different analytes
can contribute to the analyte peak very differently if
the migration rates of the analytes are different. It
should be noted that band broadening is described in
the distance domain and peak broadening is de-
scribed in the time domain.

2.2. Laplace transform and its first and second
moments

When a sample is injected onto the capillary
column, the concentration profile of the sample can
be described by a certain mathematical function, 1(¢),
such as a rectangular function or a Gaussian func-
tion. The Laplace transform of the input function is:

L{I®)} = f e I(t)dt = i(s) (4)
0

st

where e * is called the kernel function for the
Laplace transform. One should note that the trans-
formed function i(s) is the image of the function I(z)
in the domain of a new variable, s. Two useful
applications of Laplace transforms in separation
science are the first and second moments of the
response function. The first and second derivatives of
the response function are:

i'(s) = L{ — tl(t)} =Je““(—t)l(t)dt &)
0

i"(s) = L{(—0)I(1)} = f e "2 H(r)dr (6)
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The first and second moments, M, and M,, about
the origin of the transformed function are obtained
from the first and second derivatives to the original
transform function while the s in the kernel function
approaches zero. As s—0,

i(0) = j Iryde (7)
0
M, =i'(0) =J(—t)1(t)dt (8)
0
M, =i"(0)= f (=) K2)dt )
0

If the ¢ is evaluated relative to the center of
gravity, f, the integration of all the ¢ values of Eq.
(8) (which is the first moment, M,) should be equal
to zero, and f can be obtained by solving the
resulting equation.

(t—DIt)dt =0 (10)

all ¢ values

For a normalized Gaussian input function:

T A

where C, is a Gaussian function, C, is the value at
the center of gravity (the maximum) of the function,
the center of gravity is f=t1,.

For a normalized plug injection, the input function
is C,=C,=1, where 0=r=<7, and the center of
gravity is 7=1/2.

The second moment, or the variance, 0'2, is
obtained by:

f (¢t — D’ I()dr (11b)

all ¢ values

= 42 =
M,=0"=

For a Gaussian input function, the variance is the
same as that of the input function. Therefore, if we
define the injection length of a Gaussian shaped plug
as 7=4o, the resulting variance, 0'2, should be (1/
16)7°.

In Sternberg’s paper, the o’ for a Gaussian input

function is said to be (1/36)7". This arises from a
rather unconventional definition of 7, which was
defined as 60. Sternberg defined the 7 as such only
to match the results from a then widely quoted paper
by Guiochon [10]. As can be seen in Table 3 of
Guiochon’s paper, however, the results were far from
conclusive. The peak width of a Gaussian function
was defined as 40, so the effective injection length,
7, should be defined as 4o rather than the 60 used in
Sternberg’s paper.

For a rectangular input function C,=C,, 0=t=r,
where 7 is the plug length, the variance is calculated
to be (1/12)7” based on Eq. (9).

2.3. The convoluted peak shape in CE

Because of the additivity of variances (Eq. (2)),
the variance contributed by injection will be trans-
ferred directly to the final analyte peak. Therefore,
the final peak shape is a simple convolution of the
different factors that cause band broadening.

Another useful feature of the Laplace Transform is
the product of two or more transformed functions.
The inverse transform of the product gives the
convolution of the original functions. This property
is of primary importance in operational mathematics
[11].

Assuming there are only two contributing factors
in an ideal CE system, 0',2rlj and o ,, the convolution
of the two functions is:

L™Hi(s)fs)} = It)*F (1) =f1(‘r)F(t - 7ydr (12)
0

where I(t) is the injection function, F(t) is the
function for longitudinal diffusion, i(s) and f(s) are
their Laplace transforms respectively, and the *
between two functions represents a convolution
operation. The properties of convolution, the com-
mutativity, the distributivity and the associativity, are
shown in Egs. (13-15).

I)*F(t) = F(t)*I(t) (13)
I*[F@) + OO] = IO*F@) + 1()*0@) (14)
U@*FO*0@) = F@)*[1(1)*O@)] (15)
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The O() in Egs. (14,15) is the function for other factors in real cases. In Fig. 1, the injection plugs are
factors, assuming the other factors that contribute to represented by the rectangular functions in a(1), b(1)
the band broadening can be represented by one and c(1), and the diffusion factors are represented by
function. These properties are extremely important the Gaussian functions. The peak width is defined as
because they allow us to study each individual the distance between the two points on the baseline
contributing factor to the band broadening process by where tangents are drawn to the inflection points of a
approximating the other factors as one convoluted Gaussian peak. The standard deviation is defined as
function. 1/4 of the baseline peak width except for the

Fig. 1 demonstrates some hypothetical situations rectangular functions; the standard deviation for a
in a CE system when injection and longitudinal rectangular function is defined as (1/ V12)r.
diffusion are the only contributing factors to the final Fig. la(1) shows a situation when the diffusion
peak variance. The longitudinal diffusion term can variance is comparable to the injection variance. The
be considered a convoluted function for all other standard deviation for the Gaussian longitudinal
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Fig. 1. The convolution of two functions. In this figure, a(1), b(1) and c(1) are arbitrary functions before being convoluted; a(2), b(2) and
c(2) are the convoluted functions.
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diffusion factor is 0.2, and the length of injection, 7,
is equal to 1. The convoluted peak shown in Fig.
1a(2) has a variance that can be calculated from:

O = Oip + 01y =027 +(1/12) X 1=10.123

The peak width of the convoluted peak (4o, is
about 1.4, as shown in the figure.

Fig. 1b(1) shows a situation when the injection
contributes much more than diffusion to the total
variance. The 7 for injection is still equal to 1, but
the o for diffusion is 0.02, 10 times smaller than that
in Fig. 1a. The total variance of the convoluted peak
in this case is 0.0837, and the peak width is 1.15, as
shown in Fig. 1b(2). Fig. lc(1) shows a situation
when the injection 7 is 0.093, and the g, ;, is 0.2. The
total variance and the peak width of the convoluted
peak are 0.0486 and 0.88, respectively.

3. Experimental
3.1. Apparatus

A Beckman P/ACE 5500 CE system was used for
the experiments. The UV absorption was monitored
at 254 nm. System Gold software from Beckman
was used for data collection, analysis and system
control through a 486 PC computer. A 57 cm long
(50 cm to detector) X75 wm L.D., fused-silica capil-
lary (Polymicro Technologies, Phoenix, AZ, USA)
was used for the separations.

3.2. Chemicals

Adenosine (A), guanosine (G), uridine (U) and
thymidine (T) are free bases. Adenosine 5'-mono-,
di- and tri phosphate (AMP, ADP, ATP); uridine
5'-mono, di- and tri phosphate (UMP, UDF, UTP),
cytidine 5’- mono-, di- and tri phosphate (CMP,
CDP, CTP); guanosine 5’ mono-, di- and tri phos-
phate (GMP, GDP, GTP); and thymidine 5’ mono-,
di- and tri phosphate (TMP, TDP, TTP) are sodium
salts (Sigma, St. Louis, MO, USA). Penciclovir
(PCV, a nucleoside analog), 9-(4-hydroxy-3-hy-
droxymethyl-but-1-yl)guanine, was provided by
SmithKline Beecham Pharmaceuticals (Brentford,

UK). Hydroxypropyl-B-cyclodextrin (HP-B-CD) was
purchased from Aldrich (Milwaukee, WI, USA).
The nucleosides and nucleotides were dissolved in
distilled water to prepare stock solutions with con-
centrations ranging from 5.0- 107210 1.0-107° M. A
solution of 5.53-107° M PCV was prepared by
dissolving the solid in water and was stored at
—20°C. The frozen samples were thawed and a
mixture of the above nucleosides and nucleotides
was prepared by mixing 20 pl of each component
from its stock solution; the resulting concentrations
were 2-107% to 2.5-10™* M. This mixture was
further diluted by adding 20 .l of the mixture into
200 pl of electrophoresis buffer (1.8:107° to 2.3-
107 for each analyte) before being injected onto the

capillary.
3.3. CE methods

The electrophoresis buffer was 160 mM borate
(pH 9.1) with 60 mM HP-B-CD. The buffer was
prepared from distilled, deionized water filtered
through a 0.2 pm filter prior to use. Before the
capillary was used the first time, the capillary was
treated with 0.1 M NaOH for 15 min, followed by a
5 min rinse with deionized water and a 5 min rinse
with electrophoresis buffer. Between runs, the capil-
lary was cleaned and equilibrated with a 5 min rinse
with the running buffer. Sample injection was carried
out by applying a 0.5 p.s.i. (3.447 kPa) pressure to
the sample vial for a specified period of time. The
injection times are specified in the text. A voltage of
25 kV was used for the separation, and a temperature
of 20°C was maintained throughout the experiment.

4. Results and discussion
4.1. The injection plug

The average linear velocity of a liquid in a
capillary tube under pressure is described by
Poiseuille’s equation. However, the pressurized flow
gives a parabolic flow profile at the front of the
injection plug. It should be noted that Poiseuille’s
law only describes the average velocity of a sample
plug as illustrated in Fig. 2.
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(a)

j—— Poiseuille Length ——!

(b)

Fig. 2. The ideal and non-ideal injection plugs. (a) The ideal plug can be described by a rectangular function. (b} The non-ideal plug consists
of a rectangular portion and a parabolic portion. The length calculated by Poiseuille’s equation using the average flow-rate underestimates
the injection length. The parabolic portion has a negative-sigmoidal concentration profile.

A perfect plug injection is demonstrated in Fig.
2(a), and the signal profile (or the profile of the
amount of analyte along the capillary) is represented
by a rectangular function. The plug length, as defined
earlier, is 7 Fig. 2(b) demonstrates a non-ideal
situation where the injected sample plug has two
components: 7., and 7,.. The value of 7 is
shorter than the length of a perfect plug calculated by
Poiseuille’s equation. The value of 7, ,, however, is
often overlooked. The real sample length should be
longer than the one calculated by Poiseuille’s equa-
tion, as shown in Fig. 2(b). If the effective length of
the sample is used (including the parabolic front),
the variance would be larger than that calculated
from the ideal plug injection.

To obtain the real injection length, a narrow plug

of thymidine was injected onto the capillary, and
pushed through the capillary by a pressure of 20
p.s.i. (137.9 kPa). The absorption was monitored at
254 nm, and the result is shown in Fig. 3.
The values of 7., and 7,,, can be obtained by
analyzing Fig. 3. From the center of gravity of the
absorption signal, the average linear velocity of the
sample is obtained; from the width of the peak, the
width of the parabolic profile can be estimated. 7.,
is obtained from the band broadening observed in the
chromatogram at the lower part of Fig. 3, and 7,_, is
calculated by subtracting 7,,, from the product of
the maximum linear velocity of the analyte and the
injection time.

The viscosity of the liquid is calculated by
Poiseuille’s equation:

APF?
= 8UL (16)

where U is the average linear velocity measured
from Fig. 3 (2.87 cm/s), AP is the pressure (20
p.s.i.), 7 is the radius of the capillary (37.5-10™* cm)
and L_ is the total capillary length (57 cm). When
p.si. is replaced by 6.893-10° g/(cms), 7, the
apparent viscosity, is calculated to be 1.69-107°
g/(cm ), or 1.69 cP, for 160 mM borate buffer with
60 mM HP-B-CD.

The average linear velocity during the injection,
under a pressure of 0.5 p.s.i., can be obtained by
rearranging Eq. (16). The average flow-rate is 0.63
mm/s.

The Gaussian shaped peak shown in Fig. 3 is the
result of the band (peak) broadening caused by the
pressurized flow, and the peak width is equal to 7,,,,...
The retention time for the peak pushed through by a
pressure of 20 p.s.i. is 17.4 s, and the peak width is
8.3 5. Note that without molecular diffusion, the thin
layer of injected sample would have flown through
the capillary at a rate of two times the average
flow-rate, and with a uniform concentration profile
throughout the capillary. The parabolic front is the
result of molecular diffusion in a small diameter
capillary [12]. Although the length of the parabolic
portion is proportional to the square root of the
injection time, the distance traversed by the injected
fluid is proportional to the injection time.

The maximum flow-rate, or the flow-rate of the
parabolic front was obtained by using the effective
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Fig. 3. The absorption signal from pushing a thin plug of thymidine through a 57 cm capillary (50 cm from inlet to the detection
window) X 75 um LD., with a pressure of 20 p.s.i.. (a) A thin layer sample plug injected onto the capillary. (b) The rectangular and parabolic
components caused by a 20 p.s.i. pressure for 17.4 s. (¢) The absorption signal. Note that (b) and (c). are not drawn to scale because (b) is the

band on the column, and (c) is the time domain signal. The value of 7, is used to calculate the viscosity, and ¢

total injection length.

capillary length divided by the time at the starting
point of the peak [which is 17.4~(0.5-8.3)=13.2 s,
or t .. in Fig. 3]. The peak width in Fig. 3 is much
longer than the injection length (v at t=0), and the
band broadening is solely contributed by the pressure
induced parabolic flow. It should be noted that the
Gaussian shaped peak in Fig. 3 results from a thin
layer of sample which outlines the front of the
parabolic flow profile. In a real injection, the plug is
filled with sample as shown in Fig. 2(b), and the
concentration profile for 7,,., has a negative sigmoi-
dal shape. Therefore, the injected sample as a whole
can be considered close to a rectangular plug. The
length of the sample plug can be calculated by:

T=71_.. 1+T

rect para

= Ut (a7

Where Ar is the injection time and U, is the
maximum flow-rate obtained from dividing the effec-

is used to calculate the

max

tive capillary length by ¢, . In this case, because the
pressure used for injection was 0.5 p.s.i., the maxi-
mum velocity of the sample during the injection is
obtained by:

S00mm _ 0.5 p.s.i.
1325 20 p.s.i.

=095 mm/s

4.2. The injection variance

Fig. 4 shows a set of electropherograms with
different injection lengths. It can be observed that
with a 2 s (s for seconds, not the ‘s> in Eq. (4))
injection, the total peak variance is mainly con-
tributed by diffusion. The peak widths are signifi-
cantly larger for peaks with longer migration times.
On the other hand, it can be observed that when the
injection time is increased, the peak width increases
significantly for all peaks.
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Fig. 4. The electropherograms of a group of nucleosides and their phosphates with different injection times. The peaks are: 1. A; 2. C; 3. G;
4.U; 5. TMP; 6. AMP; 7. ATP: 8. UTP; 9. CDP; 10. UDT; 11. T; 12, PCV; 13. GMP; 14, ADP; 15. GTP: 16. CMP; 17/18. TTP/TDP; 19,

GDP; 20. CTP; 21. UMP.

Because of the additivity of the variance, when a
variance, af‘nj, is introduced from the injection, this
variance will contribute directly to the final peak
width, and can be described by the second moment
of the injection function [(1/ 12)7,2"}. for a rectangular
profiled injection, (1/ 16)7,2”. for a Gaussian shaped
injection).

The standard deviation of the peak contributed by

a rectangular profiled injection plug can be calcu-
lated by:
A
TR
= 18
o.ln_r V/E LD ( )
where 7, . is the plug length, t,': is the migration time
of the analyte A, and Ly, is the effective length of the
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capillary (from the injection end to the detector).
Ly /t} is the velocity of the analyte, Tlnjtﬁ /L, is the
time required for the plug to go through the detector,
and 1/V12 of this time is defined as the standard
deviation, a;,;. For a Gaussian profiled injection, the
1/+/12 in Eq. (18) is replaced by 1/4.

The same plug length contributes very differently
to the total variance of each analyte peak. The
variance is smaller for faster migrating analytes, and
bigger for slower migrating analytes. This is a
unique phenomenon that only happens when pressure
injection is used. Eq. (18) has to be used to calculate
the standard deviation for each analyte. The depen-
dence of the variance on the injection time for each
analyte studied is demonstrated in Fig. 5. It is
obvious that the injection contribution to the total
variance is much larger for slower migrating peaks
because the time required for the same plug length to
migrate through the detection window is much
longer.

4,3. Total variance and injection variance

The relationships between the total variance of

40 -

Variance (s2)

—%— Peak?
—@— Peakb
-~ Peak5

30 —h— Peak4
—t— Peak3
—6— Peak2
~4— Peak1

20

N %é

selected analytes and the variance introduced by
injection are shown in Fig. 6. It is important to note
that the variance of each contributing factor has to be
converted to temporal variance because the peak
width is usually expressed in time (s). Except for the
8 s and 10 s injections, the total variance is obtained
by fitting each peak with a Gaussian function:

Po=ko+ki-exp| - | S22 o)

where K2 is the migration time (or the center of
gravity of the peak) in min, and 60-(K3)/ V2 is the
Oy, in s. Because the peaks in the 8 s and 10 s
injection runs are no longer Gaussian, the peak width
at the baseline was measured and used as 4o7,,,. The
width of peak number 2 in the 4 s injection experi-
ment was also used as 40, because the peak height
was marred by a bubble. The total variance is o=, in
s>. The injection variances of both the rectangular
and Gaussian profiles are calculated and shown in
Fig. 6. The plug length is calculated by Eq. (17).
It is observed that the variance calculated based on
Gaussian profiled plugs underestimates the variance
contributed by injection, especially when the plug

—©— Peak10
—8— Peak9
—A— Peak8

Injection Time (s)

Fig. 5. The variance contributed from the same injection length to the peaks of analytes with different migration rates. The longer injection
length contributes much more to the slower moving analytes than to the faster moving analytes. The peak identification is the same as the

peaks numbered in Fig. 4.
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Fig. 6. The variances contributed from the injection and the final peak variances for selected peaks are plotted against the injection time. The
circles are the measured total peak variance, the triangles are the variances calculated by assuming the injection plugs have Gaussian
concentration profiles and the squares are the variances calculated assuming the injection plugs have rectangular profiles. The lengths of the
sample plugs are calculated from Eq. (17). Peaks 1 to 10 in Fig. 4 are analyzed.

length is large. The difference is not as big between
a rectangular profile and a Gaussian profile when the
injection plug is small. The rectangular sample plug
may have become close to a Gaussian profile during
the time between injection and the start of separation
because of longitudinal diffusion. For a longer

injection length, the profile more closely resembles a
rectangular profile. The difference between o2, and
o’ is the variance caused by longitudinal diffusion
(0:5,) and other factors (05,,.,). The o is larger
for slower migrating peaks because it is determined
by the Einstein equation (o7{, =2Dt(t, /L;)*), where
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D is the diffusion coefficient, ¢ is the time allowed
for the sample to diffuse which is mainly the
migration time and (f /LD)2) converts the distance
domain variance to the time domain variance). The
total variance of each peak increases linearly with
the injection variance with a slope valued between
12 and 16, and an intercept equal to the variance
caused by diffusion and other factors.

By examining Fig. 4 in more detail, one can see
that the peaks in the electropherogram with the 2 s
injection resemble the situation demonstrated in Fig.
Ic, peaks 1 to 4 in the 10 s injection run resemble
Fig. 1b, and the peaks in the 4 s or 6 s runs resemble
Fig. la. This can be explained by the convolution of
the injection function (close to rectangular) and the
diffusion function (Gaussian).

Moore and Jorgenson [7] have demonstrated that
with an optical gated injection method, the total
variance correlates very well with the sum of the
injection variance and the longitudinal diffusion
variance. The optical gated injection has the advan-
tage that the sample plug is almost a perfect rectan-
gular plug for each analyte, but the disadvantage that
the length of each sample plug injected is different
because of the different migration velocities of the
analytes during the injection. However, this ‘‘dis-
advantage’ determines that the variance introduced
by the injection for each analyte is the same. This
can be applied to electrokinetic injection as well.
Electrokinetic injection has the disadvantage that less
of the slower migrating component in a sample is
injected with a smaller volume than the faster
moving ones. The advantage is, however, that the
slower migrating component has a narrower plug
width than the faster moving components, and this
improves the resolution in cases where the limit of
detection is not a critical issue.

Although the average velocity of a sample pushed
by a constant pressure can be calculated by Poiseuil-
le’s equation, the parabolic flow profile adds more
variance to the injected plug. Optical gated injection
and electrokinetic injection, on the other hand, have
nearly perfect rectangular concentration profiles, and
the length of the plug can be easily calculated.
However, Moore and Jorgenson’s results [7] did
suggest that for slower migrating analytes, a Gaus-
sian profiled injection will fit their data better with a
variance of (1116)7’2. This is reasonable because if

the plug length is very narrow, the rectangular plug
will diffuse to a Gaussian concentration profile rather
quickly. When the injection variance is between (1/
12)7* and (1/16)77, it is likely that the concentration
profile of the injection plug is in between a rectan-
gular and a Gaussian, resulting from the convolution
of an injection function (rectangular) and a diffusion
function (Gaussian).

It should be noted that only the length, not the
volume, of an injected sample plug contributes
directly to peak broadening.

5. Conclusion

The variance contribution of a cylindrical injection
to the final peak is similar for all analytes, moving
fast or slowly in the capillary, for optical gated
injection, or for electrokinetic injection. This is
because faster moving analytes are injected with a
longer plug, and slower moving analytes are injected
with a shorter plug. In pressure induced injection,
however, the plug length is identical for all analytes.
It is important to distinguish between band broaden-
ing and peak broadening because the same sample
length requires a different time to migrate through
the detection window for analytes moving at differ-
ent velocities. The injection variance is smaller for
faster moving analytes, and larger for slower moving
analytes.

Because the variance from injection is directly
transferred to the analyte peak, as a rule of thumb,
the injection length should be kept low as long as the
detection limit is not a problem. If the separation of
the slower moving analytes in a CE separation
process is the main challenge, one should consider
using electrokinetic injection.
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